Skip to main content

Richard Venditti

Elis Signe Olsson Professor

Biltmore Hall (Robertson Wing) NA


View all publications 


Date: 02/06/19 - 2/05/29
Amount: $15,960.00
Funding Agencies: International Corrugated Packing Foundation (ICPF)

Our proposal will address all three ICPF priority areas. We will ensure that students learn and perform structural design, prototyping, and techno-economic analysis to understand how design, material types/additives, and processes (analog vs. digital) affects product performances, economics, and sustainability aspect. We will also encourage students to take elective courses in sales and marketing.

Date: 07/01/21 - 6/30/26
Amount: $238,500.00
Funding Agencies: US Dept. of Agriculture (USDA)

Interdisciplinary Doctoral Education Program will be created to focus on Renewable Polymer production using Forest Resources to Replace Plastics. PDs from three colleges will work together to train three Ph.D. students.

Date: 01/01/22 - 12/31/25
Amount: $2,998,710.00
Funding Agencies: National Science Foundation (NSF)

The objective of this proposal is to realize a circular economic system for manufacturing of soft electronics where a coordinated set of sustainable manufacturing processes and a select group of novel biodegradable and reusable materials are seamlessly integrated. It is anticipated that all components of the device can be either biodegraded or recycled/reused, and the project will explore different end-of-life pathways from both technical, economic, and environmental perspectives (e.g., through life cycle assessment and techno-economic analysis). Our team has faculty members from mechanical engineering, chemistry, chemical engineering, Industrial Engineering, and sustainable engineering, allowing us to propose a hybrid approach from material design/synthesis all the way to device manufacturing.

Date: 06/30/20 - 12/31/23
Amount: $27,222.00
Funding Agencies: VentureWell (formerly know as National Collegiate Inventors & Innovators Alliance)

Abstract: With the inevitable coming of the Green Economy, biomass valorization, use of renewable and bio-based materials and development of high-performance, recyclable, biodegradable and biocompatible products are nowadays’ challenges and opportunities to welcome a more sustainable society. Yet, to hasten its arrival, we must answer the daunting question of how we transform these challenges to opportunities? By educating new generations of students to the multiplicity of opportunities or “multiverse” of biomass, from a scientific and engineering perspective to an entrepreneurial vision. The Department of Forest Biomaterials has decades of expertise in conversion and valorization of biomass into new fuels/energies and high-performance biomaterials that offer solutions to greenhouse gas emissions, environmental and aquatic pollution and waste accumulation.We propose to leverage our graduate curriculum by adding an entrepreneurial and business competency to its strong scientific and engineering core. Our envisioned integrated program aims at educating Master and PhD students from NC State University, and others (via an online version) by training them in the principles, practices and methodologies of biomass valorization, conversion, and usage.

Date: 11/15/18 - 11/14/23
Amount: $238,500.00
Funding Agencies: US Dept. of Agriculture - National Institute of Food and Agriculture (USDA NIFA)

The objective of this proposal is to develop an education program for a new generation of researchers who understand the entire spectrum of biomass oligosaccharide production, animal production, and its analysis through a life cycle approach. Faculty members from two departments are proposing to create joint doctoral education program to address this Targeted Expertise Shortage Area (Animal Production) with Relevant Disciplines of (A) Animal Science, (B) Biotechnology, and (C) Renewable Natural Resources.Five focus areas are (1) Biomass oligosaccharide production; (2) Purification of xylose oligosaccharide; (3) Manufacturing and processing of animal feed; (4) Animal feeding and management; and (5) Life cycle Analysis. This program incorporates cross-disciplinary teamwork/advising, coursework in multiple disciplines, Preparing Future Leaders program, internship at a commercial farm, and exposure to biotechnology experts in industry.

Date: 10/01/21 - 9/30/22
Amount: $0.00
Funding Agencies: US Dept. of Energy (DOE) - Energy Efficiency & Renewable Energy (EERE)

This project will focus on rapid/real-time analysis of domestic heterogeneous municipal biomass waste utilizing AI-Enabled Hyperspectral Imaging for developing conversion ready feedstock into cost effective and sustainable biofuel for selling price under $2.50 per gallon gasoline equivalent (GGE) by 2030. Municipal solid waste (MSW) is considered as an abundant potential source for biomass. This biomass, if used as a feedstock for fuel conversion operation will promote the sustainable fuel production and lower the prices. The heterogeneity of the MSW based on locations and time period can affect the biofuels or bioproducts. Therefore, the characterization of the MSW feedstock at macro and microlevel in terms of chemical and physical composition, at different speeds of conveyor system, at different times and collection sites will be studied.

Date: 01/01/19 - 8/15/22
Amount: $150,000.00
Funding Agencies: NCSU Nonwovens Institute

It is hypothesized that the biodegradability of synthetic, natural and emerging bio-based polymer product are not fully understood in aerobic or anaerobic conditions in surface waters and may accumulate in the environment. The recalcitrance of some of these natural materials may be due to the chemical or compositional modifications to impart desired product properties. For instance, many naturally based nonwoven materials have additives incorporated to develop water, oil, or UV resistance. The overall goal of this study is to determine the factors that determine the aquatic biodegradability in surface waters (fresh and sea water) of non-woven products used in disposable applications. These factors will include the fiber structure, chemistry and assembly in the non-woven structure. The objectives of the study are the following: (1) To benchmark common disposable non-woven products with regard to their aquatic biodegradation in fresh and sea waters. (2) To benchmark natural fibers, semi-natural biobased fibers, and synthetic fibers used in non- wovens for their aquatic biodegradation in fresh or sea waters. (3) To understand how chemical, physical, and polymeric characteristics of non-woven fibers affect the aquatic biodegradation. (4) To determine how chemical and physical treatments of the fibers affect the aquatic biodegradation. (5) To model and predict the fate of such fibers in the environment, including the lifetime, fate and adsorption of toxic organic chemicals. The results of the study will allow non-woven manufacturers, researchers, suppliers, and consumers to better understand how the choice of materials will affect expected aquatic degradation, allowing all stakeholders to make more informed and better material choice decisions

Date: 08/01/19 - 7/31/22
Amount: $149,398.00
Funding Agencies: NCSU Nonwovens Institute

The Asia Pacific region is forecasted to experience the major growth in production and demand for wipes (and thus wipe substrate) over the next 10-15 years. Even though production facilities in the region might be designed to meet local demand, it is possible that an overflow of substrate materials will affect the current trade flow and thus the industry in North America (NA). Similar market dynamics have been documented in the textile and pulp and paper industry. Therefore, it is important to analyze not only how the nonwovens supply chain will evolve but also how to minimize impacts for manufacturing facilities in NA as the wipe substrate overflows occur over the next decade. An adaptable supply chain and impact assessment model applicable to different types of nonwoven materials, using wipes’ substrate market segment as a case study, will enable the industry to design strategic scenarios to embrace market changes and build competitive advantages. To achieve this goal, we have assembled a team with expertise in supply chain, conversion economics, data analytics, and materials science. Milestones include identification of major drivers for growth and megatrends for NA and selected countries in Asia, development of a supply chain network for raw materials, forecasting of new production volumes and cost, and estimate their effect on the trade balance of wipes’ substrate. Additionally, the model will enable to perform combined data analysis (including psychographics) to recognize trends as well as identify substrates with the highest and lowest risk for competition in NA.

Date: 06/15/17 - 6/14/22
Amount: $2,750,000.00
Funding Agencies: US Dept. of Agriculture - National Institute of Food and Agriculture (USDA NIFA)

The project will prepare a diverse group of college students and high school teachers with the knowledge and interdisciplinary tools necessary to advance the future of America’s bioenergy, bioproducts, and the bioeconomy. Distance courses will be developed and taught by faculty in the Departments of Forest Biomaterials & Environmental Resources, with guidance from the College of Education, undergraduate students are recruited from historically underserved institutions (HBCU, women’s college, community college), as are teachers from rural, high poverty NC high schools. Undergraduates will complete three of the five online courses in bioenergy & bioproducts, and complete an industry internship, and earn a certificate. Bioproducts and bioenergy industrial and research organization partners provide hands-on internship projects in the industry or in a research setting. Rural high school science teachers will complete three of the five online courses, earn a certificate, participate in professional development workshops, carry out lessons with their students during the school year, and conduct a career fair in bioproducts and bioenergy.

Date: 10/01/18 - 3/31/22
Amount: $1,250,807.00
Funding Agencies: US Dept. of Energy (DOE) - Energy Efficiency & Renewable Energy (EERE)

The objective of this project is to demonstrate catalytic processes for upgrading carbohydrates to hydrocarbon biofuels using two low-cost wet organic waste streams: Papermaking sludge and Post-sorted municipal solid waste. The work is based on the previous success of hydrocarbon production from corn stover in a bench scale via dilute-acid and enzymatic deconstruction followed by dehydration to furans, condensation, and hydrodeoxygenation to hydrocarbons. The project team will develop (1) a sugar production process and a removal strategy of non-carbohydrates that could poison catalysts during the conversion process, (2) isomerization and dehydration processes necessary to convert both glucose and xylose to furans in a single reactor, (3) an upgrading process of furans via aldol condensation with ketone and hydrodeoxygenation to diesel range hydrocarbons, and (4) a detailed techno-economic analysis to integrate and optimize the overall process. The developed process in this project will be demonstrated in a relevant pilot-scale and life cycle assessment will be evaluated.

View all grants