Jodi Forrester
Publications
- Determining the effectiveness of using acoustic velocity as an indirect measurement of branchiness in standing longleaf pine , CANADIAN JOURNAL OF FOREST RESEARCH (2023)
- Differences in soil organic matter between EcM- and AM-dominated forests depend on tree and fungal identity , ECOLOGY (2023)
- Experimental Evidence that Forest Structure Controls Detrital Decomposition , ECOSYSTEMS (2023)
- Herbaceous plant height is an early indicator of groundlayer response to an experimental manipulation of forest structure and deer pressure , FOREST ECOLOGY AND MANAGEMENT (2023)
- Linked disturbance in the temperate forest: Earthworms, deer, and canopy gaps , ECOLOGY (2023)
- Tradeoffs between timber and wildlife habitat quality increase with density in longleaf pine (Pinus palustris) plantations , Forest Ecology and Management (2023)
- Linking wood-decay fungal communities to decay rates: Using a long-term experimental manipulation of deadwood and canopy gaps , FUNGAL ECOLOGY (2022)
- Northern hardwoods seedlings respond to a complex of environmental factors when deer herbivory is limited , FOREST ECOLOGY AND MANAGEMENT (2022)
- Temporal trends in CO(2 )emissions from Picea rubens stumps: A chronosequence approach , FOREST ECOLOGY AND MANAGEMENT (2022)
- Deadwood Reduces the Variation in Soil Microbial Communities Caused by Experimental Forest Gaps , ECOSYSTEMS (2021)
Grants
During the mid 1950s, nearly 70% of mature Fraser fir in natural stands was lost due to impacts of the invasive insect balsam woolly adelgid. Since the 1980s, there has been substantial regeneration and recovery in most Fraser fir stands across its native range. Recently, a new wave of mortality has been noted in several of these stands. The purpose of the proposed research is to document the extent of new Fraser fir mortality across its range, determine what age cohort (mature versus regenerated) is being affected, and identify potential factors underlying the observed mortality.
We plan to inventory mid-rotation southern Appalachian hardwood forests harvested approximately 50 years ago via clearcutting. The harvests were conducted as part of a study, providing baseline and early response measurements as points of comparison. By examining how species composition has changed over time and across environmental gradients, we can identify locations on the landscape where there are opportunities to use silvicultural treatments to promote oak and hickory and conserve diversity.
The purpose of this agreement is to document the cooperation between the parties to accomplish cultural and natural resource management and support. In addition to getting critical work accomplished, the partnership will offer valuable workforce development opportunities to interns and crew members through the Public Land Corps programs.
The mission of the North American Forest Ecology Workshops (NAFEW) is ���to bring researchers, academicians, and managers together to foster dialogue and discussion of current issues related to basic and applied research in forested ecosystems in North America.��� We will host the 15th Biannual North American Forest Ecology Workshop in Asheville, NC in June 2024.
A monitoring program for Carolina hemlock ecosystems will be implemented across the species range. Vulnerability will be assessed using long-term growth, climate, and insect infestation patterns. Growth and mortality rates from the spatially extensive empirical data will be tested against Carolina hemlock status conditions from the Forest Inventory and Analysis program data.
Significant changes to the historical disturbance complex have altered ecological function in many Southern Appalachian forested ecosystems. To maintain oak and hickory and perpetuate the forest types that have been ecologically and economically important to the region, it is necessary to seek alternative management approaches that will restore species, structural, and functional complexity to the Appalachian region. We are proposing to evaluate oak regeneration under traditional silvicultural systems and use these results to guide the design of an alternative expanding-gap approach; to initiate baseline sampling imperative in the long-term evaluation of the expanding-gap approach; and use stand- and landscape-scale simulations to test the degree to which a gap-based, silvicultural approach will increase: 1) oak regeneration, 2) structural complexity and species diversity; and 3) carbon sequestration and storage. Specifically we will evaluate the capacity for alternative hardwood management practices to increase the regeneration of oak and hickory within the Southern Appalachian mixed oak forest. We will assess the interactions among forest structure, composition, regeneration and ecosystem processes and integrate our empirical research into a spatially-explicit landscape model to simulate multiple scenarios of management, disturbance, and climate interactions. With strong support from local and regional forestry professionals and non-government organizations, our team of University and Forest Service scientists will ensure that the results will reach managers and resource professionals. We specifically address AFRI Program Area D, Priority 1 with the goals of advancing our understanding of processes and interactions and assessing and developing new management practices to improve ecosystem services.
Oaks (Quercus spp.) are a dominant component of the overstory in nearly 50% of the forested land base (~79 million ha) in the eastern United States (Johnson et al., 2002; Smith et al., 2009), but widespread oak regeneration failure throughout their natural range threatens the persistence of oak cover (Dey 2014). As a result, contemporary deciduous oak-hickory (Quercus-Carya) forests are shifting towards domination by red maple (Acer rubrum), yellow-poplar (Liriodendron tulipifera), sugar maple (A. saccharum), or aspen (Populus spp.) (Abrams 1998, 2005, Nowacki and Abrams 2008, Dey 2014). These mesophytic species are more vulnerable to drought, fire, and insects with greater potential for reduced productivity and carbon storage capacity (Elliott et al. 2015, Roman et al. 2015, Klos et al. 2009). The increasing importance of more mesophytic and fire-sensitive species is linked to reduced water quantity and altered hydrology and nutrient availability through changes in stemflow, throughfall and litter quality (Alexander and Arthur 2010, Caldwell et al. 2016). This widespread conversion from dominance by oak to maple and other mesophytic species was caused by changes to the historical disturbance regime (Lorimer 1989, Runkle 1982, Rentch et al. 2003a, b). Prior to Euro- American settlement, mixed-oak forests were characterized by complex structure and diverse species composition, with high levels of heterogeneity at both the stand- and landscape-scales (Rentch et al. 2003a, b). Widespread resource extraction and other factors associated with Euro-American settlement (e.g., land clearing and subsequent land abandonment, wildfires, grazing, etc.), combined with pervasive clearcutting on public lands in the mid- to late 20th century, homogenized species composition (e.g., conversion of mixed-oak stands to pure yellow-poplar) and reduced structural complexity at all scales (Lorimer 1989, Runkle 1982, Rentch et al. 2003a, b). Mixed oak forests have high economic and ecological value. Declines in the amount of oak forests have significantly negative effects on water quantity and quality, nutrient cycling, and floral and faunal diversity. Sustainable management and restoration of oak ecosystems have become primary goals for many federal and state natural resource agencies and non-governmental conservation organizations (Dey 2014). Private landowners are also seeking novel approaches to manage for both high-quality timber and wildlife. Silvicultural recommendations for oak forests have advanced over the past decades. We propose to evaluate oak regeneration under traditional silvicultural systems and use these results to guide the design of an alternative expanding-gap approach; to initiate baseline sampling imperative in the long-term evaluation of the expanding-gap approach; and use stand- and landscape-scale simulations to test the degree to which a gap-based, silvicultural approach will increase: 1) oak regeneration, 2) structural complexity and species diversity; and 3) carbon sequestration and storage. This project will contribute to fundamental knowledge of the extensive, second-growth hardwood forests of the Southern Appalachians and will apply a new management practice to meet multiple goals of ecosystem function, biodiversity, and commodity production. Biodiversity conservation, carbon storage, and water yield need not be conflicting alternatives to timber production. Results from the proposed research will aid in developing management goals for greater structural, compositional and functional diversity in mature oak forests.
This study directly addresses Forest Restoration and, more specifically, shortleaf pine restoration in support of the Shortleaf Pine Initiative; a priority research topic identified by both SRS and R8. This study will continue to build upon and refine our knowledge related to the ecology and management of southern yellow pine communities across the South. This study takes advantage of the widespread distribution of shortleaf pine across the EFR Network and builds upon current EFR-related projects specific to shortleaf pine, including a study assessing current and future shortleaf pine habitat and population trends and a study examining the genetic diversity/hybridization of shortleaf pine. The primary goal associated with this study is to improve our understanding of the ecology and management of shortleaf pine and, more broadly, southern yellow pine ecosystems across the southern region. Specific objectives include: 1) Quantify the shortleaf pine/southern yellow pine resource on key experimental forests within the eastern SRS������������������s EFR network using LiDAR and field data/NAIP imagery. 2) Quantify the spatial arrangement of the existing shortleaf/southern yellow pine overstory and understory within the selected EFRs. 3) Identify environmental factors influencing the spatial distribution of shortleaf/southern yellow pine (overstory and understory) within and among selected EFRs. Factors may include edaphic conditions, disturbance history, distance to seed sources, and various topographic variables (slope, aspect, solar radiation load, etc.).
In this study we propose to evaluate forest establishment and maintenance practices implemented as part of the Longleaf Pine Initiative and Working Lands for Wildlife. Sites will be chosen to represent a range of longleaf pine forest ages and planting densities, including seedling planting rates recommended for the establishment of gopher tortoise habitat (450-600 per acre) and rates recommended for timber and/or pine straw production (600-900 per acre). We will measure forest condition and habitat quality to assess if a threshold exists for balancing habitat and timber quality. The results will be used to quantify the benefit of NRCS past conservation efforts and to estimate the potential impact of future work across the gopher tortoise range.
The response of forest ecosystem carbon dynamics to disturbance is difficult to predict because it requires long term experiments on complex interactions among changing production, decomposition,microclimate, and nutrient regimes. Accomplishing this is critically important to predict and manage forests under future uncertainty, maintaining carbon management and sustainably meeting societal needs. To achieve this we are proposing to continue and expand process-based measurements of our long-term experimental manipulation of canopy openings and woody debris to evaluate the effects of disturbance on forest carbon pool dynamics and net ecosystem productivity. We are uniquely poised to address this question using our replicated, large-scale, field experiment established a decade ago in a sugar maple dominated northern hardwood forest in northern Wisconsin. The long-term goal of the on-going project is to quantify the effects of forest structure on carbon cycling and biodiversity and apply these first principles to ecosystem restoration, carbon management and sustainable forest management of northern hardwoods in the Great Lakes region. We propose to: 1) re-measure vegetation and soil carbon pools at three different time periods in the next decade to quantify the continued effects of the experimental treatments; 2) refine measurements of soil respiration to better estimate heterotrophic sources; 3) quantify decomposition dynamics 15 and 20 years following treatment; and 4) use the data from this process-based study in a simulation model to examine the effects of forest structural heterogeneity on landscape carbon dynamics