Skip to main content

Jordan Kern

Asst Professor

Jordan Hall Addition 3219


View all publications 


Date: 08/01/22 - 7/31/27
Amount: $413,671.00
Funding Agencies: National Science Foundation (NSF)

This proposed work will weave together new and existing knowledge about natural hazards, power systems, and financial/economic markets in order to explore interdependencies and feedbacks between the U.S. power sector??????????????????s efforts to manage extreme weather and reduce greenhouse gas emissions. Research efforts will focus on developing a deep understanding of system dynamics in different testbeds distributed across the U.S. These testbeds will facilitate investigation of how regional differences in natural resources, climate, infrastructure, and human institutions shape interactions between extreme weather and decarbonization efforts. The unifying thread throughout, and the major research objective of this proposal, is the development and application of a systems analysis framework for resilient and robust management of weather risk in grids transitioning to renewable energy.

Date: 10/01/21 - 9/30/26
Amount: $15,147,874.00
Funding Agencies: National Science Foundation (NSF)

The Science and Technologies for Phosphorus Sustainability (STEPS) Center is a convergence research hub for addressing the fundamental challenges associated with phosphorus sustainability. The vision of STEPS is to develop new scientific and technological solutions to regulating, recovering and reusing phosphorus that can readily be adopted by society through fundamental research conducted by a broad, highly interdisciplinary team. Key outcomes include new atomic-level knowledge of phosphorus interactions with engineered and natural materials, new understanding of phosphorus mobility at industrial, farm, and landscape scales, and prioritization of best management practices and strategies drawn from diverse stakeholder perspectives. Ultimately, STEPS will provide new scientific understanding, enabling new technologies, and transformative improvements in phosphorus sustainability.

Date: 05/01/23 - 4/30/26
Amount: $128,930.00
Funding Agencies: National Science Foundation (NSF)

Collaboration between Colorado School of Mines, NC State, Pacific Northwest National Laboratory, and National Renewable Energy Laboratory. Study will examine the probability of drought causing "dead pool" events at reservoirs in the Western United States (where water levels fall so low that hydropower production is impossible), and the impacts on the cost and reliability of bulk electric power system operations.

Date: 05/01/23 - 4/30/25
Amount: $993,560.00
Funding Agencies: US Dept. of Energy (DOE) - Energy Efficiency & Renewable Energy (EERE)

The responsibilities of Emergency Management agencies are extensive and constant, through four generally recognized phases: Mitigation, Preparedness, Response and Recovery. Energy assurance is only one of many key emergency support functions, and the availability of electricity during and after a disaster is a very important metric for community resilience. In this project the team will develop Energy Resiliency Metrics and a Playbook for Community Energy Resilience to guide Emergency Managers and their community to assess and implement assist energy resilience to mitigate the effects of energy loss during a disaster. The core of the playbook will be a framework for integrating enhanced community energy resilience in the planning and execution for each phase of emergency management. A primary focus will be the use of distributed energy resilience resources, such as solar photovoltaics (PV) and energy storage at several points levels of local disaster response ??? local critical infrastructure facilities, community outposts and low income housing. The team will develop and test a process for selecting facilities, assessing for economic feasibility, determining resilience benefits and developing the resilience resources. Finally, metrics for community energy resilience that are appropriate for use by emergency management at the local and state level will be developed. The NCCETC in collaboration with the State of NC Emergency Management, the NC State Energy Office, the Smart Electric Power Alliance (SEPA), the NC Justice Center and A Better Chance A Better Community will support several local government emergency management stakeholders and their communities including: - City of Asheville/Buncombe County Urban center in mountainous area; - City of Wilmington/New Hanover County; - Roanoke Rapids / Halifax County - Rural, inland area

Date: 08/01/20 - 1/31/25
Amount: $345,456.00
Funding Agencies: National Science Foundation (NSF)

This project will develop an improved understanding of the coupled dynamics among the natural processes that underpin drought and poor air quality, the human systems that manage water resources and electricity supply, and localized human exposure to fine particulate matter and ozone pollution, all under the influence of two anthropogenic drivers: technology adoption and climate change.

Date: 01/30/23 - 12/31/24
Amount: $30,000.00
Funding Agencies: US Dept. of Energy (DOE)

Most hydropower utilities rely on external forecast products provided by NOAA River Forecast Centers and/or an additional source from private industry to support the scheduling of hydropower operations. The producers of these forecasts ?????????????????? NOAA, industry, and even in-house forecasters ?????????????????? do not have access to the dynamic energy prices (production cost models) or the electricity traders?????????????????? strategies to maximize revenue from utilization of the hydropower assets. Therefore, the group operating the reservoir is unable to assess the market value of their inflow forecasts, eliminating any ability to target forecast improvements to increase contributions of hydropower to electrical system needs. Both NOAA and industry have reached out to DOE WPTO to understand which inflow forecast products and accuracy levels would be needed to enhance the value of forecasts, from water management and marketed hydropower and grid resilience perspectives. We propose to use inflow forecast, reservoir and power system model simulations, and case studies to practically demonstrate where forecast improvements would create the most value for hydropower services. This research will benefit utilities and other hydropower operators who utilize flow forecasting to support water management and electricity production; it will also support DOE in targeting future investments related to forecasting that will benefit these groups.

Date: 10/01/20 - 9/30/24
Amount: $255,000.00
Funding Agencies: US Dept. of Energy (DOE)

The overarching goal of the proposed research tasks for the NCSU team in Phase 2 of IM3 is to help develop new, open source operational models of the U.S. bulk electric power system, one for each of the three regional interconnections: the Western Electricity Coordinating Council (WECC); the Electric Reliability Council of Texas (ERCOT); and the Eastern Interconnection (EIC). These models will then be used by NCSU and other members of the IM3 team to address the impacts of weather and water dynamics in the simulation of grid operations in Experiment Groups B and D as described in the IM3 Phase 2 proposal

Date: 10/01/19 - 9/30/24
Amount: $356,731.00
Funding Agencies: US Dept. of Energy (DOE) - Energy Efficiency & Renewable Energy (EERE)

Concerns over depleting oil reserves and national security have spurred renewed vigor in developing bio-based fuels. A variety of feedstocks, conversion technologies, and biobased refinery concepts have been proposed and are being investigated. The viability of these systems is typically quantified through sustainability assessments. Current work has focused on the assessment of technologies either based on economic viability or environmental impact but typically not concurrently. Further, there has been minimal work in the area of biorefinery optimization. The proposed work will develop a unique toolset that is capable of identifying promising production pathways as well as performance targets for biobased energy and co-product systems. The foundation of the work is a modular engineering process model that captures the performance of various feedstock production systems, conversion technologies, and end use. This foundation is coupled with techno-economic, life cycle and resource demand modeling to understand the sustainability of the various production pathways. The work includes the novel coupling of economics and environmental impact through integration of a social cost of carbon such that a more holistic assessment can be performed.

Date: 08/27/20 - 8/26/24
Amount: $345,444.00
Funding Agencies: US Dept. of Energy (DOE) - Energy Efficiency & Renewable Energy (EERE)

We will develop a framework for characterizing the uncertainty on the performance of electric power system??????????????????s assets and for using that uncertainty characterization in the operations of electricity markets (including scheduling, dispatch, pricing,and settlement). We will focus on the uncertainty of bulk renewables (wind farms, solar PV farms, and hydropower) w/o energy storage systems, but will also consider smaller scale renewables in the system that are either directly participating in wholesale markets, or behind-the meter, impacting load.

Date: 02/17/20 - 6/30/24
Amount: $656,250.00
Funding Agencies: Game-Changing Research Incentive Program for Plant Sciences (GRIP4PSI)

Enabling the next generation of sustainable farms requires a paradigm shift in resource management of the two most critical agricultural inputs for food production: water and nitrogen (N) - based fertilizer. Inefficient management of these resources increases food production costs, decreases productivity, and impacts the environment. An integrated approach is needed to improve the sustainability and efficiency throughout the production chain. Emerging (bio)electrochemical (BEC) technologies offer alternatives to conventional, fossil-fuel intensive N fertilizer production. Recently our team has demonstrated two game-changing BEC technologies: 1) microbial conversion of nitrogen gas into ammonium, and 2) plasma generation of N species (e.g., nitrate, nitrite) and other reactive species in water for fertilization and anti-pathogen benefits. We will integrate these technologies to produce BEC, N-based fertilizer, and with advanced sensor and delivery systems, we will precisely supply fertilizers for sustainable precision agriculture. Our proposed approach focuses on the development of a novel ????????????????BEC fertigation on demand system??????????????? by using sensor-driven data and molecular analyses to investigate BEC fertigation impact on the plants?????????????????? growth, adaptation, and microbiome; its impact on food safety and quality, and its economic feasibility for on-farm deployment.

View all grants