Skip to main content

Kathie Dello

Director

Research Building III 130

Grants

Date: 11/16/20 - 11/15/23
Amount: $144,848.00
Funding Agencies: NC Department of Transportation

Under their water quality permitting, NCDOT is required to monitor stormwater controls along their projects. Traditionally, this has been handled by taking daily rainfall measurements at each project site. However, collection of this data and monitoring requires substantial manual labor. The State Climate Office of North Carolina at NC State University (SCO) has developed an automated tool for NCDOT that provides rainfall monitoring and alert services using precipitation estimates derived from weather radar combined with available surface rain gauges. This heavy rainfall monitoring and alert tool has been estimated to save in excess of 113,000 work hours each year since 2005. This effort by NCDOT and SCO has received several state and national awards. This proposal will continue maintenance of the current NCDOT Precipitation Alert tool, will modernize and stabilize the IT infrastructure supporting the tool, and will upgrade the user registration and approval system.

Date: 09/01/21 - 8/31/23
Amount: $949,999.00
Funding Agencies: US Dept. of Commerce (DOC)

Recent extreme weather and climate events in our region (e.g., 2016 Wildfires, Hurricanes Matthew (2016), Irma (2017), Florence (2018), and Dorian (2019)) signal a significant change from the past, causing unprecedented damage across the Carolinas. The Carolinas are getting wetter, hotter, and more humid in a changing climate. Climate change has and will continue to impact the health and well-being of every community, but not all communities are affected equally . The experiences of minority and underserved communities at the start of the climate crisis will be reproduced in other parts of society as climate change impacts become more pronounced and widespread. These communities are the canaries in the coal mines for the rest of society. The proposed RISA team will build upon years of regional work on climate science, tools and assessments to move into a new phase that centers Justice, Equity, Diversity, and Inclusion (JEDI) principles at the forefront of NOAA-funded climate research, and to deliver climate futures to more communities than have been previously served. We will apply a bottom-up participatory action approach to develop a transferrable model for end-to-end co-production of actionable and equitable climate resilience solutions in at-risk communities in the Carolinas. Our aims include: Aim 0. Demonstrate our commitment to addressing the climate reality in a just and equitable way, while ensuring the inclusivity and diversity of all voices are represented in every aspect of our work in the Carolinas; Aim 1. Build and enhance local partnerships in underserved communities across the Carolinas to identify, test, and refine equitable solutions for climate resilience; Aim 2. Understand and predict how co-occurring and consecutive hazards interact with exposure and vulnerability to shape climate risk; Aim 3. Identify and connect the complex linkages between structures of power, intersecting social positions, and climate-health inequities in vulnerable communities; and Aim 4. Design and implement community-sciences programs to track physical and social science metrics and build community-level climate resiliency literacy. Our proposed work addresses the goals of the RISA program by combining regional relevance and local expertise in the Carolinas. Our innovative, integrated physical and social science research will be tailored to the needs and priorities of the participating communities. The solutions we co-produce with minority, low-income communities will be designed to tackle both the societal drivers of risk and the changing climate hazard landscape through knowledge to action networks. The long term goal to devise a national model for addressing the roots of climate inequity through place-based research and education will serve the broader national network of adaptation practitioners.

Date: 06/01/20 - 12/31/22
Amount: $351,644.00
Funding Agencies: NC Department of Transportation

The frequency and intensity of both floods and droughts are expected to increase in response to climate change; however, significant uncertainties remain regarding regional changes, especially for extreme rainfall. In particular, North Carolina’s geographic position makes it vulnerable to several natural hazards that pose significant flooding risks, including hurricanes, severe thunderstorms, and large winter storms. The most obvious problems within NC in recent years are the pluvial and fluvial flooding from notable hurricanes which paralyzed the eastern NC highway system for days to weeks. The heavy rainfall associated with Hurricanes Floyd (1999), Matthew (2016), Florence (2018), and Dorian (2019) generated record-breaking fluvial flooding along key economic corridors including I-95, I-40, US-70, NC-12, and US-64, and created a chain of transportation infrastructure problems that affected emergency response operations and the transportation of goods. In particular, I-95 facilitates 40 percent of the Nation’s GDP while US-70 and I-40 are key routes for supporting the military, agriculture and the economy in eastern NC. Though hurricanes receive a lot of attention in resilient design, as they should, transportation engineers face additional challenges, including possible changes to rainfall intensity from localized thunderstorms and even drought. NC officials, recognizing the risks posed by a changing climate, developed Executive Order 80 (EO80) to help protect the people, natural environment, and economy of North Carolina. NC DOT is likewise working to implement solutions to become more resilient to weather extremes in a changing climate. This objective of this study is to improve confidence in climate change projections by quantifying future precipitation extremes within NC for resilient design (e.g., precipitation intensity, duration, frequency curves). This project will incorporate guidance developed for the National Cooperative Highway Transportation Research Board, NCHRP 15-61, with additional methods and numerical model experiments to improve confidence in future precipitation extremes, and to inform design concepts for potential future events.

Date: 10/01/19 - 9/30/22
Amount: $386,000.00
Funding Agencies: US Geological Survey (USGS)

Under the Endangered Species Act (ESA), the US Fish and Wildlife Service (USFWS) must evaluate the status of at-risk plants and animals in the US. A Species Status Assessment (SSA) is a scientific assessment prepared for each at-risk species to help inform a range of management decisions under the ESA. SSA’s are currently needed for more than 350 species, including 250 in the Southeast alone. These species are affected by several factors including urbanization, loss of habitat, changes in streamflow and water quality, climate variability, and climate change. In partnership with scientists from the USFWS and US Geological Survey, this project will develop and test data products that will assist USFWS biologists to incorporate climate information into SSA’s, including how the climate factors and thresholds that most affect species vary year-to-year, how they are expected to change in the future, and the uncertainties associated with those changes. This project will develop and test the efficacy of using a web-based collection of maps and data layers for interpreting climate vulnerability of wildlife and their habitats. Each map product will focus on the most relevant climate and ecology metrics that predict species viability for a location, and include explanatory and interpretive materials. Regular input from USFWS scientists will ensure the information is accessible, useful, and usable. The efficacy will be tested by implementing eye-tracking evaluations, surveys, and feedback sessions and iteratively applying these findings to the design and development of the tool. This web-based framework will help USFWS scientists in the Southeast US obtain, understand, and apply the climate information they need, thus enhancing the accuracy, quality, and scientific rigor of SSA’s. This project will produce a web-based collection of regional maps of past and current climate conditions relevant to species’ biology and principal habitat, and a range of possible future outcomes from climate models. Technical documents and scientific manuscripts will be produced that communicate the results of user testing and information learned on how to design maps and environmental data visualization to better support SSA’s.

Date: 10/01/20 - 6/30/22
Amount: $84,200.00
Funding Agencies: NC Department of Agriculture & Consumer Services

Climate change analysis and training After having participated in the development of North Carolina’s first Climate Science Report and Climate Change Risk and Resiliency report, the State Climate Office will help translate the climate science surrounding future fire weather and wildfire conditions for NC Forest Service through a set of research studies and educational initiatives. These include: • An analysis of fire danger indices or expected days per year suitable for prescribed burning. Using current climate model projections, we will generate maps and statistics showing expected future burning conditions. In Year 1, we will identify and retrieve the needed model data and prescribed burning thresholds at a statewide or NCFS district level. In Year 2, we will calculate key indices and the average number of days per year meeting those identified thresholds. • Developing educational resources for NCFS about climate change, including explanations of the results of our analysis, educational modules/webinars (TBD in consultation with NCFS) Analysis of organic soil moisture data The organic soil moisture monitoring stations deployed by the State Climate Office have been collecting multi-depth observations since 2018. With a high-quality dataset available over this time period, we will conduct an analysis with the goal of identifying trends in organic soil moisture based on depth or other factors, and proxy measures for organic soil moisture and fire/smoldering risk. In Year 1, we will identify datasets to use in our comparison analyses, including NASA’s satellite-based SMAP product and groundwater well data from the Pocosin Lakes Wildlife Refuge. In Year 2, we will conduct an analysis of the collected data to identify the best-correlated parameters with organic soil moisture and create an initial set of guidelines or recommendations that fire practitioners and land managers can use for estimating or assessing organic soil moisture and fire risk. Producing short-range outlooks Continuing the drought communications work that the State Climate Office started in Project Nighthawk, we will produce monthly short-range outlook resources geared toward forestry and fire management. Based on forecast guidance from the National Weather Service, these products will present anticipated weather conditions over the 1- to 4-week period covered by each outlook, noting any potential sectoral impacts such as drought development, high winds or low humidity, and precipitation frequency. Outlooks will be generated once per month during the two-year project period and will be shared via an email listserv and on the State Climate Office’s fire weather website.

Date: 06/20/17 - 5/31/22
Amount: $148,840.00
Funding Agencies: US Dept. of Agriculture (USDA) Forest Service

The campus of North Carolina State University (NCSU) in Raleigh, NC is emerging as an epicenter for regional efforts on climate change impacts and response. The State Climate Office (SCO) has been on NCSU’s campus since the 1981 and has collaborated in research and public service with multiple colleges and state and federal agencies. In 2009, the US Department of the Interior (DOI) selected NCSU as the host institution for the Southeastern Climate Science Center (SE CSC). In the same year, the DOI also located the South Atlantic Landscape Conservation Cooperative (SALCC), one of six LCCs in the southeast, on NCSU's Centennial Campus. The US Department of Agriculture (USDA) has also established the Southeast Regional Climate Hub (SERCH), located on NCSU's Centennial Campus. NCSU is itself a regional leader in climate change research, and as Land Grand University, has a significant extension capacity. Due to both physical proximity and synergistic missions among these entities, there is tremendous opportunity to develop strong collaborative working relationships with regional implications. This agreement will build on previous work completed between the SCO and USDA Southeast Regional Climate Hub (SERCH), specifically providing outreach, support, and development of a variety of data visualization and decision support tools.

Date: 04/07/20 - 4/06/22
Amount: $217,318.00
Funding Agencies: National Oceanic & Atmospheric Administration (NOAA)

North Carolina State University shall provide support to Synoptic Data Corp (Synoptic) in the continuation of the National Mesonet Program. The National Weather Service (NWS) desires to continue delivery of the National Mesonet Program capability that meets the needs of a broad and diverse set of constituents across the weather enterprise. This capability will enable NWS to improve forecasts and warnings for severe weather, enhance numerical weather prediction capabilities, and achieve effective collaboration among disparate network operators to promote NOAA’s objective of a Weather-Ready Nation.

Date: 08/01/19 - 12/31/21
Amount: $722,487.00
Funding Agencies: US Dept. of Agriculture - Animal and Plant Health Inspection Service (USDA APHIS)

Prevention, eradication, containment, and mitigation of exotic agricultural pests are affected by various biotic and abiotic factors. These factors include weather and climate patterns, host availability, human-activities, wind-dispersal, and effectiveness and economics of management practices. Each of these factors has to be assessed from the port to the field or from the infested area to un-infested area. Climate plays a key role in determining pest spread and distribution because many agricultural pests are poikilothermic organisms, and future climate change scenarios have to be included in the assessment and analysis. The primary purpose of this agreement is to support further development of SAFARIS. We continue our collaboration with the Climate Office of North Carolina to understand the availability and accuracy of weather/climate data, Lincoln University (New Zealand) to develop methods to evaluate and reduce uncertainties associated with pest forecasts, and the NCSU Center for Geospatial Analytics to estimate pest spread using Markov chain Monte Carlo simulation techniques, uncertainty evaluations, and visualization of the pest prediction data.

Date: 10/01/16 - 10/31/21
Amount: $231,097.00
Funding Agencies: US Environmental Protection Agency (EPA)

NCSCO proposes a new data interface for DEQ/DWR designed to integrate the various point-based data sources housed at DEQ/DWR, along with weather and water data from the NCSCO. The long-term goal is to develop a web-based application programming interface (API) service that allows data to be pulled across these sources into a common output format, which will allow DEQ/DWR staff and stakeholders to more easily access weather and water data (quantity and quality) to meet regulatory, planning, and stakeholder needs.

Date: 08/01/16 - 3/05/21
Amount: $523,046.00
Funding Agencies: National Oceanic & Atmospheric Administration (NOAA)

The North Carolina State Climate Office (NCSCO) at North Carolina State University (NCSU) has provided IT support for the SERCC since its inception in 2007. The relationship between SERCC and NCSCO takes advantage of the information technology and climate data management capacity and expertise at NCSCO, but also helps ensure state- and local-level needs are constantly considered as part of SERCC product and service delivery. NCSCO maintains the computing that hosts ACIS and the SERCC website. It works closely with SERCC staff, including monthly in-person coordination meetings, to ensure that technology services meet SERCC needs. NCSCO staff consists of 8 applied climatologists with scientific and information technology expertise. With a combined 60 years of experience, NCSCO specializes in developing climate data tools and products that translate climate science and data into user-driven visualization and decision support tools. As part of this contract NCSCO will continue to design, develop, test, and maintain, and enhance climate database and web services for SERCC. The focus for this period will be on maintenance of the Applied Climate Information System, the SERCC website, and the associated climate information tools. Additional effort will be focused on development of new climate information tools and services to support the mission of SERCC.


View all grants 

Groups