Skip to main content

Shih-Chun Lin

Asst Professor

Engineering Building II (EB2) 3072

Publications

View all publications 

Grants

Date: 09/01/22 - 8/31/25
Amount: $213,737.00
Funding Agencies: National Science Foundation (NSF)

This project investigates programmable edge to cloud infrastructure and management tools, which will ensure end-to-end transmission performance. The work focuses on integrating optical core networks and edge networks and provides time-efficient management and orchestrations to handle diverse service-level agreements of multiple concurrent end-to-end traffic flows.

Date: 06/09/22 - 12/23/23
Amount: $200,000.00
Funding Agencies: Lockheed Martin Corp.

This project aims at providing a feasibility study about anti-jamming techniques for newly emerged MIMO p-LEO satellite (or LEO satellite swarm) systems. LEO satellites located 1,200 km above the Earth’s surface provide ultra-wide coverage and light-of-sight (LOS) communications to ground terminals. By equipping multiple antennas on satellites and ground terminals, MIMO LEO satellites can exploit MIMO technologies with the LOS channels to enable more robust air-to-ground communications with higher throughput. This research will introduce an in-depth investigation and propose novel algorithms to realize the potential of anti-jammed MIMO p-LEO satellites.

Date: 06/01/22 - 5/31/23
Amount: $20,000.00
Funding Agencies: NCSU NC Space Grant Consortium

This project aims at addressing the technical issues in the Space-Based Adaptive Communications Node (Space-BACN) by providing reliable connections between satellites in different constellations managed by diverse operators, including the government and the commercials, using optical inter-constellation links. Space-BACN should offer a coordination protocol and APIs to serve satellites in different constellations using a hierarchical architecture to enable cross-constellation connectivity.

Date: 03/01/22 - 2/28/23
Amount: $15,000.00
Funding Agencies: Academic Consortium 21

The steep traffic growth on the Internet (+20-30%/year) continues and is accelerated due to the COVID-19 pandemic. The widespread teleconferencing and working at remote sites further boost traffic globally by 50% in a year. To fully take advantage of the 5G and future 6G mobile communication infrastructure and the considerable computation and storage resources in data centers, we have to bridge these in an end-to-end manner with minimized latency and broad bandwidth. This project will develop future programmable and resilient converged wireless-optical networks for next-generation wireless applications and mission-critical services.

Date: 08/01/21 - 12/31/22
Amount: $175,001.00
Funding Agencies: Cisco Systems, Inc.

This project will employ in-network computation at 5G wireless edges and enable data processing to occur in the middle of the transmissions between multi-agents and remote cloud servers. Thus, it forges effective convergence of communication, computing, and learning with regard to wireless link bandwidths, available computing power, and collected data's statistical features. Also, this project will provide a privacy-preserving framework from decentralized data by exploiting in-network processing operations. The proposed framework can achieve sophisticated and heavy-loaded machine learning algorithms through multiple low-end control units. It, in turn, preserves the data privacy for massive mobile user information in ICT or sensing information and intelligent manufacture/control commands in industrial scenarios. On the other hand, the proposed solution can also offload computation to the networking infrastructure, releasing the burden of multi-agents.

Date: 05/01/20 - 12/31/22
Amount: $316,583.00
Funding Agencies: NC Department of Transportation

Center for Excellence on Connected Autonomous Vehicles NC-CAV with Project 1 CAV Impacts on Traffic Intersection Capacity and Transportation Revenue Collections, Project 2 Assessing NC Readiness for CAVs in Traditional and Emerging infrastructure needs, and Project 3 Developing and implementing CAV-UAV Collaboration for Advancing the Transportation systems.

Date: 11/23/21 - 12/08/22
Amount: $20,000.00
Funding Agencies: Lockheed Martin Corp.

Proliferated low earth orbit (p-LEO) satellite constellations have emerged as enabling technologies for 6G networks due to their potential in global coverage and ubiquitous services, especially for rural and remote areas. The need for access equality via p-LEO satellites’ high communications capacity with ultra-wide ranges is more urgent than ever, as we have abruptly switched to remote living in the past year due to the pandemic. However, no convergent solution currently exists for p-LEO-based satellite networking infrastructures that leverage the synergy of space and terrestrial systems. Fundamental architectural, management and operational changes are still urgently required to realize such ground-space ecosystems. This project presents a serverless software-defined architecture that dynamically orchestrates communications and computation resources for a diverse set of 6G service-level agreements. This project provides a multi-tier machine learning framework that uses a unified control platform to optimize networking and resource configurations according to space and ground tiers’ peculiarities and interactions. The intelligence within collaborative learners (i.e., ground stations and satellites with computing capabilities) can realize efficient broadband access for multiple ground users. The proposed architecture can further establish high-throughput, reliable end-to-end transmissions through software-defined internetworking for global connectivity. The innovative use cases and ecosystem enhancement, including Ka-band adoptions, automatic network slicing, application-defined interfaces, are also investigated to boost end-to-end performance and significantly impact future human society.

Date: 03/01/21 - 2/28/22
Amount: $15,000.00
Funding Agencies: Academic Consortium 21

Aiming at UN’s SDGs #9, this project will initiate collaborative research discussion about developing scalable and resilient cyberinfrastructure for UAV-enabled wireless networks in mission-critical services. The PIs will discuss several core research items in this initial discussion via five in-person team meetings, i.e., one in Nagoya (Spring), one in Raleigh (Summer), one in Adelaide (Fall), and two pass-by visits in Hsinchu, Taiwan. Moreover, PIs intend to seek external grants based on the initial discussion, reinforcing institutions strategic research partnerships.

Date: 04/01/19 - 12/31/19
Amount: $10,000.00
Funding Agencies: Academic Consortium 21

As one of the 5G envisioned services, ultra-reliable and low-latency communications (URLLC) aim to provide secure data transmissions from one end to another with ultra-high reliability and deadline-based low latency requirements, enabling tactile Internet, mission-critical Internet of Things, and vehicle safety applications. Meanwhile, unmanned aerial vehicles (UAVs) for wireless communications has drawn much attention as the mass production of high-performance, low-cost, intelligent UAVs become more practical and feasible, which empowers more functional diversity for 5G networks. Based on the PIs’ expertise at the three institutions, Dr. Lin at North Carolina State University (NC State), Dr. Kobayashi at Nagoya University (NU), and Dr. Shi at The University of Adelaide (AU), this project will initiate collaborative research discussion and external grant planning for introducing a holistic software-defined wireless architecture that ensures URLLC in 5G UAV ecosystems. Several teleconferences and onsite discussion at three institutions will be established. The project will also organize an international workshop in the International Conference on Materials and Systems for Sustainability (ICMaSS) 2019 in Nagoya, Japan, to bring together researchers in all relevant areas. The PIs will actively seek the feedback from industry partners to work with us on developing, testing and deploying the 5G UAV framework. Moreover, PIs plan to develop a visiting/exchange Ph.D. student program designed to allow graduate students to spend a semester (preferably in summer) at the PIs’ institutions for academic exchanges to enhance the cross-linkage between the lines of research pursued by the team members.


View all grants