Skip to main content

Bill Hunt III

Assistant Professor & Extension Specialist

Weaver Administration Bldg 210A


View all publications 


Date: 08/01/14 - 12/31/28
Amount: $141,293.00
Funding Agencies: Lifetime Fitness, Inc.

Lifetime Fitness (LTF) is developing an existing driving range in Northeast Raleigh into a Personal Fitness Center. To complete a project conducted prior to construction, LTF has pledged to monitor their center and property which has been designed to mimic pre-development hydrology and pollutant loads. NCSU-BAE proposes to collect hydrologic and water quality data from the completed development immediately before flow exits the property (at a monitoring station constructed during phase I of this project). Data collected during this second phase will be compared to that of the earlier (pre-development) monitoring period. NCSU faculty and staff will participate in up to 4 public meetings to discuss the project as part of public service/outreach, if needed.

Date: 01/01/23 - 6/30/25
Amount: $148,022.00
Funding Agencies: US Environmental Protection Agency (EPA)

The Third Fork Creek watershed is located in an older and heavily urbanized part of Durham, NC. It is impaired for Copper, Benthos, Turbidity, and TSS. Additionally, Third Fork Creek flows into B. Everett Jordan Reservoir (Jordan Lake), which has TMDLs for Total Phosphorus and Total Nitrogen, as well as a TMDL Addendum for High pH and Turbidity impairments associated with the State chlorophyll-a standard in Jordan Lake. Major stream restoration and watershed management projects undertaken by various organizations have already realized great improvements. Much of the watershed’s urban stormwater runoff, however, remains untreated prior to entering Third Fork Creek. This proposed project will uplift three existing SCMs (Dry Detention Basins) in the watershed and convert them into new SCMs (Constructed Stormwater Wetlands) that better address the water quality needs of Jordan Lake and Third Fork Creek. Dry detention basins (DDB’s) offer minimal water quality benefits compared to constructed stormwater wetlands (CSW’s); the latter can maintain similar temporary volume storage while greatly improving treatment of TSS, phosphorus, and nitrogen. The proposed retrofits are expected to be relatively inexpensive.

Date: 08/16/22 - 12/31/24
Amount: $148,297.00
Funding Agencies: NC Department of Transportation

The state of North Carolina has been struck by several extreme rainfall events over the past few years, which have caused failures in stormwater infrastructure (including but not limited to Stormwater Control Measures (SCMs) regulated under the Department’s NPDES stormwater permits (NCS000250)). While SCMs are designed to treat runoff, their principal focus has been treating moderately sized rain storms. How these SCMs fared during larger events, and the restorative maintenance efforts associated with SCM damage is a significant concern for NCDOT. The Department has a substantial investment in stormwater management assets with over 1900 SCMs having been constructed to treat runoff from roadways, bridges, rest areas, and maintenance yards across the state. Moreover downstream stormwater infrastructure is protected by SCMs (e.g., swales and other conveyance channels). Fortunately, NCDOT has conducted quantitative monitoring of several of these SCMs installed as part of its NPDES permit-required Retrofit Program. NCDOT would benefit understanding at what storm size do typically-designed SCMs no longer provided hydrologic mitigation. At what point do SCMs likely fail with significant structural degradation (both to the SCM and downstream) that would lead to costly reconstructive repair? Moreover, are there simple retrofits to existing SCMs (or design features for to-be-built SCMs) that can enhance or extend hydrologic mitigation and reduce the chances of failure?

Date: 05/02/22 - 6/30/24
Amount: $348,463.00
Funding Agencies: US Environmental Protection Agency (EPA)

Wilson’s Hominy Creek Swamp is a Nutrient Sensitive Water (NSW) with benthos impairment. NC State University and the City of Wilson are partnering to implement a large-scale stormwater wetland that would treat runoff from most of downtown Wilson. Runoff from approximately 80-acre watershed will be treated by this off-line, flow-through wetland. As this urban SCM is large (3 acres), the funding request is separated into three proposals: (1) herein which requests funds for construction and a small amount of personnel time for construction supervision, (2) an EEG administered by the NCDOJ is providing funds for the design of the wetland, and (3) funds from the NCL&WF have recently been requested to cover all monitoring expenses. This wetland is expected to be highly effective at reducing N&P inputs to Hominy Swamp Creek, with SNAP outputs suggesting that nearly 17,000 lbs of N and more than 3000 lbs of P will be removed over a 30-year period. Because of the expected success of the project and the fact that many communities are looking for means to reduce runoff (to protect downstream underserved communities) while improving water quality, we plan to offer a flow-through wetland design workshop series in NC (including in Wilson) towards the end of this project. This workshop will disseminate information that will hopefully encourage other communities to follow a similar path. Lastly, due to the size of the ecosystem that is being created near downtown Wilson, the City will be partnering with the local science museum (Imagination Station) to develop educational displays.

Date: 11/01/21 - 2/09/24
Amount: $63,059.00
Funding Agencies: NC Department of Environmental Quality (DEQ)

A subsurface gravel wetland will be constructed in Raleigh, NC by the City of Raleigh. North Carolina State University (NCSU) will monitor the gravel wetland for one year, analyze the data, and synthesize the results in a final report to the City of Raleigh. If the project is successful, these water quality and hydrology data will be used to help the North Carolina Department of Environmental Quality establish nutrient concentrations for subsurface gravel wetlands.

Date: 09/20/21 - 12/31/23
Amount: $182,526.00
Funding Agencies: US Environmental Protection Agency (EPA)

Five-to-six urban pervious landcovers will be selected in the Raleigh-Durham area and 2-3 urban pervious landcovers will be selected in the Wilmington area. The intent of locating research sites in both places is to test a gradient of soil types (sandy in Wilmington and clayey in Durham/Raleigh). Three principal pervious covers will be tested, but flexibility exists for these to be adjusted per input from NCDEQ personnel. As of now, we will test forests with minimal management, shrub areas with minimal management, and turfgrass. Exact sites will be selected during the first 3 months of the project. Each small catchment will be surveyed to determine its size. When necessary, NC State SEG will construct diversions to channel runoff to a monitoring station. No monitoring will be installed until reviewed and approved by NC DEQ. Every site will be monitored for approximately one year and data collection will occur during the following 15 months (not every monitoring site will have the same “start” date). Hydrologic and water quality data will be collected using automated samples, v-notch weirs coupled with pressure transducers, and rain gauges. Flow-proportional samples will enable the calculation of Event Mean Concentrations (EMC’s) that are necessary for SNAP. The graduate student will keep a quarterly-revised tally of results for each monitoring station and be able to report this to NCDEQ upon DEQ’s request. Data will be analyzed using statistical techniques and tabulated in a final report. Findings from this report are intended to be incorporated into the SNAP tool. A workshop will be held towards the end of the project with a focus on SNAP, during which time the results of this research will be shared to the design and regulatory community.

Date: 08/20/22 - 10/31/23
Amount: $10,000.00
Funding Agencies: North Carolina Land and Water Fund

Jacks Smith Creek is a highly urbanized stream in Washington, North Carolina that has documented impairments due to increased runoff volumes, magnitude and frequency of channel-forming flows, and pollutant loadings. This project proposes to assist the team assembled by Sound Rivers, Inc (grantor) to draft a 9-Element Watershed Restoration Plan to help address these impairments and improve water quality. NCSU will provide consultation on potential project sites, nutrient loading estimates, and conduct a literature review.

Date: 12/01/22 - 9/30/23
Amount: $22,307.00
Funding Agencies: US Environmental Protection Agency (EPA)

Minimum Design Criteria, or MDCs, are used by NCDEQ to determine whether a Stormwater control measure (SCM) is compliant with state standards and therefore able to be permitted for us. For a SCM to be used en masse in North Carolina, MDCs must be available. Without MDCs, therefore, the likelihood of widespread use is negligible. Two stormwater practices that have been studied recently in NC (by NC State and others) have garnered the interest of the design community, but neither of them have MDC’s and therefore are not easily used. Those two practices are regenerative stormwater conveyance and native grass lined swales, which include wet swales. NC State faculty and a student will synthesize recently completed research and existing design guidance from elsewhere to produce MDCs for both of these stormwater control measures.

Date: 01/31/22 - 7/31/23
Amount: $100,000.00
Funding Agencies: NC Clean Water Management Trust Fund

Monitoring results from traditionally designed multi-cell stormwater wetlands and flow-through wastewater treatment wetlands suggest designing stormwater wetlands as flow-through rather than capture and release systems would provide cost savings and increase the implementation of stormwater wetlands for treatment (Hathaway and Hunt 2010; Merriman et al. 2016; Drake et al. 2018; Wang et al. 2006). The purpose of this project is to determine the water quality and hydrologic benefits of flow-through wetlands. More specifically, this project will address NC DEQ concerns regarding appropriate hydraulic retention times, vegetation selection, and pollutant removal credits. Addressing these concerns will determine if stormwater wetlands can be more cost effective than equivalent SCMs (e.g. wet ponds). To the project stakeholders' knowledge single cell stormwater wetlands designed for a hydraulic retention time rather than a design volume have yet to be constructed or monitored in North Carolina.

Date: 02/23/21 - 7/31/23
Amount: $100,000.00
Funding Agencies: NC Clean Water Management Trust Fund

Wet detention ponds, or wet ponds, are one of the most common stormwater control measures installed in North Carolina and humid regions throughout the world. While wet ponds are effective at attenuating peak flow, previous research has shown inconsistent pollutant removal efficiency. As ponds are a popular SCM in North Carolina, the improvement of their pollutant removal efficiencies is essential in North Carolina’s nutrient sensitive watersheds. To address these treatment shortcomings, research has recently focused on retrofits to existing wet ponds to improve nutrient removal. One popular retrofit is the floating treatment wetland (FTW). Previous research has begun to address questions surrounding the use of FTWs as a wet pond retrofit, including attempts to quantify nutrient removal and surface coverage requirements for targeted pollutant removal. This project will deploy FTWs at two nutrient sensitive locations in Wilmington and Raleigh, NC to test the effectiveness of placing FTWs at the outlet of a system through pre- and post-installation water quality monitoring and wetland plant biomass analysis in order to close the knowledge gaps with FTWs to the extent necessary to prepare nutrient removal credit guidance for the NC DEQ SCM Credit Document and lead to the implementation of FTWs throughout NC.

View all grants