Skip to main content

Anders Huseth

Assoc Professor

Research Annex West A 101

Publications

View all publications 

Grants

Date: 09/15/22 - 9/14/26
Amount: $379,074.00
Funding Agencies: USDA - National Institute of Food and Agriculture (NIFA)

The CleanSEED project aims to develop a research and extension proposal that will address the critical needs of U.S. sweetpotato certified seed programs using stakeholder input to identify priority research areas and build relationships between industry representatives, top research scientists, and clean plant organizations. The project will include a collaborative process that brings together multi-state and multi-institutional teams of biological, physical, and social scientists to promote a trans-disciplinary systems-based approach, create a plan to address USDA priorities, and a plan for disseminating the results. The following SCRI program legislatively mandated focus areas will be addressed: a) Pest and disease management - sweetpotato clean seed is integral to management not only of systemic pathogens such as viruses and soft rot bacteria, but also to soilborne pathogens that infect roots such as the storage roots used for sweetpotato seed; b)Emerging and invasive species - black rot caused by the root and soilborne fungus Ceratocystis fimbriata re-emerged in 2013-14 and was apparently spread to other states on seed roots. GRKN, Meloidogyne enterolobii, was first found in Florida in 2001, then reported in North Carolina in 2011, and was intercepted on sweetpotato seed roots in interstate shipments in 2018. It is an invasive threat that poses a serious problem to vegetable and row crop industries throughout the U.S. and sweetpotato seed roots are an ideal vehicle for its dissemination; c)To improve production efficiency, handling and processing, productivity, and profitability over the long term - common U.S. sweetpotato viruses can reduce yields 25-40%, affect skin color and uniformity of shape. Black rot and GRKN can render sweetpotatoes unmarketable and quarantines for GRKN and sweetpotato weevil restrict efficient movement of sweetpotatoes to various markets; d)Improved monitoring systems for agricultural pests - breeding lines entered into therapy programs are routinely tested for viruses present, improving methods of seed inspection could provide an additional opportunity to detect new or re-emerging problems; e) Effective systems for pre-harvest and postharvest management of quarantine pests - clean seed of sweetpotato is a proven means of managing a long list of pathogens and pests that can infect or infest storage roots, but improved delivery systems and education programs will be needed to take advantage of this opportunity.

Date: 01/15/21 - 1/14/26
Amount: $238,500.00
Funding Agencies: USDA - National Institute of Food and Agriculture (NIFA)

A Pipeline of a Resilient Workforce that integrates Advanced Analytics to the Agriculture, Food and Energy Supply Chain

Date: 09/01/23 - 8/31/25
Amount: $324,982.00
Funding Agencies: USDA - National Institute of Food and Agriculture (NIFA)

Lorsban has been the cornerstone of soil pest control in sweetpotato and white potato for decades. A recent decision to remove registrations for chlorpyrifos (Lorsban) has left a major gap in pest control plans for sweetpotato in the southern United States. The goal of this project is to build innovative Integrated Pest Management (IPM) programs that alleviate reliance on chlorpyrifos while increasing sustainability of the sweetpotato production system. Objectives will be to 1) build monitoring and modeling capabilities for adult click beetles, and 2) develop innovative strategies to control wireworms in sweetpotato production systems across the eastern coastal plain of the Carolinas and Virginia. Results will help improve management recommendations for multiple states.

Date: 02/24/21 - 5/31/25
Amount: $1,200,000.00
Funding Agencies: US Dept. of Agriculture - Foreign Agricultural Service

This project will develop integrated strategies to address trade barriers for export sweetpotatoes in the United States.

Date: 06/01/20 - 5/31/25
Amount: $85,080.00
Funding Agencies: USDA - Agriculture Research Service (ARS)

An objective of our project is to identify new pheromone compounds from live unmated pestiferous click beetle females. A second objective is to field screen possible pheromone compounds to determine which chemicals or blends are attractive to pestiferous click beetle species.

Date: 02/01/23 - 1/31/25
Amount: $16,014.00
Funding Agencies: NC Soybean Producers Association, Inc.

This project aims to survey stink bugs and natural enemies in North Carolina soybeans. The threat of stink bug damage to soybean production has been increasing in multiple NC field crops over the past several years. We do not understand what environmental or crop patterns are driving this change. Moreover, the last comprehensive statewide survey of stink bugs in soybean was conducted several decades ago. As a result, we do not understand how the distribution of stink bug species vary at the field, farm, or regional level across the state. Generating this information is important because susceptibility to common insecticides varies among species and, in turn, efficacy of spray decisions. Preservation of natural enemies that are predators of stink bugs and other pests is another component of sustainable soybean production systems. We do know that several stink bug egg parasitoids are important predators of these pests, however, we do not know how common they are across the state. To address this knowledge gap, this project proposes an on-farm survey of stink bugs and associated natural enemies in soybean from the mountains to the coast. Results from this survey will complement several other NC State projects focused on stink bug management. Together, our collective efforts will help guide extension efforts focused on regionally specific scouting and pesticide recommendations.

Date: 01/01/22 - 12/31/24
Amount: $74,957.00
Funding Agencies: Cotton, Inc.

This project will document basic ecology and management of common and emerging insect pests and diseases found in SE cotton. Together, results from this work will document linkages between management activities and pest population dynamics in small-plot and on-farm tests.

Date: 09/15/20 - 9/14/24
Amount: $324,997.00
Funding Agencies: USDA - National Institute of Food and Agriculture (NIFA)

Brown stink bug, Euschistus servus, is the costliest and most problematic insect pest of corn in the southeastern US, and a major pest of soybean and cotton across the southeastern US and Midsouth. Our objectives are to 1. Measure stink bug populations in suitable host crops during the autumn where corn will be planted during the spring 2. Characterize overwintering habitats based on the categorization of host plants or forest structure 3. Measure brown stink bug colonization into spring corn adjacent to non-crop overwintering habitats and annual crops. 4. Estimate stink bug injury in focal corn fields 5. Assess corn yields relative to stink bug density and landscape features 6. Identify landscapes at risk for infestation by brown stink bug and create a risk map for the southeastern US 7. Document baselines for management of brown stink bug in field crops and disseminate brown stink bug risk management recommendation to relevant stakeholders

Date: 09/01/20 - 8/31/24
Amount: $500,000.00
Funding Agencies: USDA - National Institute of Food and Agriculture (NIFA)

Accurate monitoring for changes in pest susceptibility to insecticidal toxins expressed in genetically engineered agronomic crops is currently an ineffective process limited by both scale and scope of deployment. Although long-term scientific and social change will be necessary to minimize pest resistance evolution, understanding near-term shifts in susceptibility through novel monitoring will also be essential to enable more effective resistance management strategies. To address this limitation on resistance monitoring, we propose to develop and deploy real-time pheromone-based sensor platforms to indicate patterns of lepidopteran pest activity in landscapes. We will use cotton bollworm (Helicoverpa zea Boddie) as a case study to develop and refine automated monitoring tools designed to detect shifts in pest susceptibility.

Date: 09/01/19 - 8/31/24
Amount: $1,943,971.00
Funding Agencies: USDA - National Institute of Food and Agriculture (NIFA)

Weed management was identified as a high priority of organic sweetpotato producers who lack chemical control options available to conventional producers. This project will examine the effectiveness of multiple weed management techniques including 1) the use of advanced sweetpotato lines and cultivars with bunching shoot architecture to outcompete weeds for light resources and allow for more efficient use of between-row cultivation, 2) modified planting density to reduce the critical period for weed removal, 3) identification of weed suppressive (allelopathic) lines that can function in a production environment, and 4) utilization of fall-planted cover crops and reduced tillage transplanting operations to reduce the dependence on cultivation. Recognizing that these techniques may have non-target effects, this project will also investigate the insect pest pressure and plant disease occurrences in the test plots. Research-based findings will be shared with stakeholders and the greater scientific community via field days, production meetings, expos, conferences, peer-reviewed journal publications, Extension publications/fact sheets/bulletins, and electronic newsletters, webpages, and social media. Throughout the proposed project, investigators will remain engaged with the US Sweetpotato Stakeholder Advisory Panel to ensure the project remains aligned with industry goals and that meaningful results are effectively communicated to stakeholders nation-wide. Identifying best practices for weed management, in an integrated pest management context, will facilitate the development and improvement of organic sweetpotato production, in line with Goal 1 of the Organic Agriculture Research and Extension Initiative.


View all grants